Здравко обнови решението на 25.10.2015 23:05 (преди над 9 години)
+class Integer
+ def prime?
+ return false if self == 1
+ divisor = 2
+ square_root_of_number = Math.sqrt(self)
+ while divisor <= square_root_of_number
+ return false if self % divisor == 0
+ divisor += 1
+ end
+ true
+ end
+end
+
+class RationalSequence
+ include Enumerable
+
+ def initialize(count)
+ @count = count
+ end
+
+ def each
+ row, position = 1, 1
+ yielded_numbers_count = 0
+ going_upward = false
+ while yielded_numbers_count < @count
+ numerator, denominator = position, row + 1 - position
+ numerator, denominator = denominator, numerator if going_upward
+ irreducible = Rational(numerator, denominator)
+ if irreducible.numerator == numerator # if it was not reduced
+ yield irreducible
+ yielded_numbers_count += 1
+ end
+ position += 1
+ if position > row
+ position = 1
+ row += 1
+ going_upward = !going_upward
+ end
+ end
+ end
+end
+
+class PrimeSequence
+ include Enumerable
+
+ def initialize(count)
+ @count = count
+ end
+
+ def each
+ yielded_numbers_count = 0
+ number = 2
+ while yielded_numbers_count < @count
+ if number.prime?
+ yield number
+ yielded_numbers_count += 1
+ end
+ number += 1
+ end
+ end
+end
+
+class FibonacciSequence
+ include Enumerable
+
+ def initialize(count, first: 1, second: 1)
+ @count = count
+ @first = first
+ @second = second
+ end
+
+ def each
+ current = @first
+ following = @second
+ yielded_numbers_count = 0
+ while yielded_numbers_count < @count
+ yield current
+ current, following = following, current + following
+ yielded_numbers_count += 1
+ end
+ end
+end
+
+module DrunkenMathematician
+ module_function
+
+ def meaningless(n)
+ first_rational_numbers = RationalSequence.new(n)
+ two_groups = first_rational_numbers.
+ group_by { |number| number.numerator.prime? || number.denominator.prime? }
+ two_groups.map { |key, group| two_groups[key] = group.reduce(1, :*) }
+ two_groups.fetch(true, 1) / two_groups.fetch(false, 1)
+ end
+
+ def aimless(n)
+ first_n_prime_numbers = PrimeSequence.new(n)
+ rational_numbers = []
+ first_n_prime_numbers.each_slice(2) do |group|
+ rational_numbers << Rational(group.fetch(0, 0), group.fetch(1, 1))
+ end
+ rational_numbers.reduce(0, :+)
+ end
+
+ def worthless(n)
+ rational_numbers = RationalSequence.new(Float::INFINITY)
+ taken_numbers = []
+ rational_numbers.take_while do |number|
+ taken_numbers << number
+ taken_numbers.reduce(0, :+) <= n
+ end
+ end
+end